• на главную
  • наши контакты
  • поиск по сайту
Юридические компании


Реклама на портале



monavisa.ru

Случайные вопросы


Юристы и адвокаты

Частный юрист Рычков В. О.
Частный юрист Каплин В. В.

Ответ на вопрос: "Решение транспортных задач в Excel", можно узнать обратившись через формы обратной связи



Решение транспортных задач в Excel

Лифанов О. П.
 

1.1 Математическая постановка задачи 4. 1.2 Решение задачи в среде Excel 6. 2. Транспортная задача с промежуточными пунктами 8. 2.1 Математическая постановка задачи 9. 2.2 Решение задачи в среде Excel 11. 3. Задача о назначениях 15. 3.1 Математическая постановка задачи 15. 3.2 Решение задачи в среде Excel 17. Список использованной литературы 25. Классическая транспортная задача.

Оптовая фирма по продаже цемента имеет четыре склада, находящиеся в разных районах г.Саратова, объёмы запасов на которых представлены на рисунке 1. Фирма обслуживает строительные организации, которые производят капитальный ремонт четырёх объектов, спрос которых также представлен на рисунке 1.

Расстояния между складами и объектами строительства представлены в таблице 1. Рисунок 1 – Объемы спроса и предложения. Таблица 1 – Кратчайшие расстояния, км. 1.1 Математическая постановка задачи. В исследовании операций под транспортной задачей обычно понимают задачу выбора плана перевозок некоторого товара (изделий, груза) от m источников (пунктов производства, поставщиков) к n стокам (станциям назначения, пунктам сбыта), обеспечивающего минимальные транспортные затраты.

При этом предполагают, что. а) мощность i-го источника (объем поставок товара от i -го источника) равна S i >0, i =1. m. б) мощность j-го стока (объем поставок товара к j -му стоку) равна D j >0, j =1. n. в) стоимость перевозки единицы товара (в условных денежных единицах) от i -го источника к j -му стоку равна c ij.

) суммарная мощность всех источников равна суммарной мощности всех стоков, т.е. Далее под объемом товара будем понимать его количество в фиксированных единицах измерения. ля математического описания транспортной задачи вводят переменные x ij .

обозначающие объемы поставок товара от i -го источника к j -му стоку. В этом. На рисунке 3 показано представление транспортной задачи в виде сети с m пунктами отправления и n пунктами назначения, которые показаны в виде узлов сети. Дуги . соединяющие узлы сети, соответствуют маршрутам, связывающим пункты отправления и назначения.

С дугой ( i , j ), соединяющей пункт отправления i с пунктом назначения j . соотносятся два вида данных: стоимость c ij перевозки единицы груза из пункта i в пункт j и количество перевозимого груза x ij .

Объем грузов в пункте отправления i равен S i . а объем грузов в пункте назначения j равен D j . Задача состоит в определении неизвестных величин x ij . минимизирующих суммарные транспортные расходы и удовлетворяющих ограничениям, накладываемым на объемы грузов в пунктах отправления (предложение) и пунктах назначения (спрос. Р исунок 3 – Представление транспортной задачи в виде сети.

Когда суммарный объем предложений (грузов, имеющихся в пунктах отправления) не равен общему объему спроса на товары (грузы), запрашиваемые пунктами назначения, транспортная задача называется несбалансированной . В этом случае, при решении классической транспортной задачи методом потенциалов . применяют прием, позволяющий несбалансированную транспортную задачу сделать сбалансированной.

Для этого вводят фиктивные пункты назначения или отправления. Выполнение баланса транспортной задачи необходимо для того, чтобы иметь возможность применить алгоритм решения, построенный на использовании транспортных таблиц. 1.2 Решение задачи в среде Excel. Данную задачу можно решить симплекс-методом или с помощью, так называемой, транспортной таблицы . Исходные данные для решения классической транспортной задачи целесообразно представить в виде двух таблиц, в первой из которых представлены значения стоимости перевозок единицы товара c ij от i -го поставщика к j -му потребителю.

Во второй таблице представлены: значения S i предложения каждого i -го поставщика, значения D j спроса каждого j -го потребителя, переменные x ij . первоначально принимающие нулевые значения, вспомогательная строка и вспомогательный столбец Сумма. Целевая ячейка D24 должна содержать формулу, выражающую целевую функцию. Используя меню Сервис?Поиск решения открываем диалоговое окно Поиск решения, в котором устанавливаем целевую ячейку равной минимальному значению, определяем диапазон изменяемых ячеек и ограничения и запускаем процедуру вычисления, щелкнув по кнопке Выполнить.

В Excel несбалансированная транспортная задача решается путем изменения ограничений по спросу (если спрос превышает предложение) или по предложению (если предложение превышает спрос. Таблица 9 – План оптимального закрепления. Потребительский спрос бассейна и школы удовлетворены полностью.

На складе Волжского района остается не вывезенным 300 мешков, на Ленинском складе – 250 мешков. Общая стоимость перевозки составляет 53500 условных единств. Транспортная задача с промежуточными пунктами. В транспортной сети, показанной на рисунке 2, осуществляются перевозки груза из пунктов 1 и 2 в пункты 5 и 6 через транзитные пункты 3 и 4. Стоимость перевозки единицы груза между пунктами показана в таблице 3.

Предложение пунктов 1, 2 (П1 и П2) и спрос пунктов 5,6 (С5 и С6) выбирается соответственно из таблиц 4 и 5. Построить транспортную модель с промежуточными пунктами. Рисунок 2 – Схема транспортной сети.

Таблица 3 – Стоимость перевозки единицы груза между. пунктами транспортной сети.


Ответ:
monavisa.ru С уважением, Поляков А. Г..
 
Юридическая консультация онлайн
назад к списку вопросов

Похожие вопросы


© 2008-2018 Информационный юридический портал "Monavisa.ru"